Skip to contents

All functions

adjust_binary()
Adjust the MLE in a binary regression
adjust_glm()
Estimate coefficients of a high-dimensional GLM
boot_fun()
Compute one bootstrap for a GLM
bootglm()
Compute resized bootstrap MLE for a GLM multiple times
compute_deriv()
Derivative of the negative log-likelihood
estimate_eta()
Estimate eta from MLE coef.
estimate_gamma()
Estimate the signal strength
estimate_variance()
Estimate std.dev. of the linear predictor evaluated at the MLE
find_param()
Solves a system of nonlinear equations
get_simulate_fun()
Simulate response given linear predictors
glm_boot()
Resized bootstrap method for a GLM
print(<glmadj>) summary(<glmadj>) print(<summary.glmadj>) predict(<glmadj>)
Methods for adjusted glm objects
hinge()
Hinge function
integrate2_normal()
2-dimensional Gaussian Expectation
lrt_glm()
LRT for high-dimensional glm
probe_frontier()
Estimate the problem dimension where two classes become linearly separable
prox_op()
One-dimensional proximal operator
rho_prime_logistic() f_prime1_logistic() f_prime0_logistic()
Logistic loss function
separable_proportion()
Porportion of linearly separable subsamples
signal_strength()
Estimate intercept and signal strength
solve_kappa() solve_beta() solve_gamma()
Compute the phase transition curve