Function reference
-
adjust_binary()
- Adjust the MLE in a binary regression
-
adjust_glm()
- Estimate coefficients of a high-dimensional GLM
-
boot_fun()
- Compute one bootstrap for a GLM
-
bootglm()
- Compute resized bootstrap MLE for a GLM multiple times
-
compute_deriv()
- Derivative of the negative log-likelihood
-
estimate_eta()
- Estimate eta from MLE coef.
-
estimate_gamma()
- Estimate the signal strength
-
estimate_variance()
- Estimate std.dev. of the linear predictor evaluated at the MLE
-
find_param()
- Solves a system of nonlinear equations
-
get_simulate_fun()
- Simulate response given linear predictors
-
glm_boot()
- Resized bootstrap method for a GLM
-
print(<glmadj>)
summary(<glmadj>)
print(<summary.glmadj>)
predict(<glmadj>)
- Methods for adjusted glm objects
-
hinge()
- Hinge function
-
integrate2_normal()
- 2-dimensional Gaussian Expectation
-
lrt_glm()
- LRT for high-dimensional glm
-
probe_frontier()
- Estimate the problem dimension where two classes become linearly separable
-
prox_op()
- One-dimensional proximal operator
-
rho_prime_logistic()
f_prime1_logistic()
f_prime0_logistic()
- Logistic loss function
-
separable_proportion()
- Porportion of linearly separable subsamples
-
signal_strength()
- Estimate intercept and signal strength
-
solve_kappa()
solve_beta()
solve_gamma()
- Compute the phase transition curve