Function reference
-
adjust_binary() - Adjust the MLE in a binary regression
-
adjust_glm() - Estimate coefficients of a high-dimensional GLM
-
boot_fun() - Compute one bootstrap for a GLM
-
bootglm() - Compute resized bootstrap MLE for a GLM multiple times
-
compute_deriv() - Derivative of the negative log-likelihood
-
estimate_eta() - Estimate eta from MLE coef.
-
estimate_gamma() - Estimate the signal strength
-
estimate_variance() - Estimate std.dev. of the linear predictor evaluated at the MLE
-
find_param() - Solves a system of nonlinear equations
-
get_simulate_fun() - Simulate response given linear predictors
-
glm_boot() - Resized bootstrap method for a GLM
-
print(<glmadj>)summary(<glmadj>)print(<summary.glmadj>)predict(<glmadj>) - Methods for adjusted glm objects
-
hinge() - Hinge function
-
integrate2_normal() - 2-dimensional Gaussian Expectation
-
lrt_glm() - LRT for high-dimensional glm
-
probe_frontier() - Estimate the problem dimension where two classes become linearly separable
-
prox_op() - One-dimensional proximal operator
-
rho_prime_logistic()f_prime1_logistic()f_prime0_logistic() - Logistic loss function
-
separable_proportion() - Porportion of linearly separable subsamples
-
signal_strength() - Estimate intercept and signal strength
-
solve_kappa()solve_beta()solve_gamma() - Compute the phase transition curve