Skip to contents

solve_kappa computes the problem dimension \(\kappa\) where the phase transition occurs in binary regression, given \(\beta\) and \(\gamma_0\). solve_beta and solve_gamma computes \(\beta_0\) and \(\gamma_0\) on the phase transition curve given the other one and \(\kappa\).

Usage

solve_kappa(rho_prime, beta0, gamma0)

solve_beta(rho_prime, kappa, gamma0, verbose = FALSE)

solve_gamma(rho_prime, kappa, beta0, verbose = FALSE)

Arguments

rho_prime

Function. Success probability \(\rho(t) = \mathrm{P}(Y=1\,|\, X^\top \beta = t)\)

beta0

Numeric. Intercept value.

gamma0

Numeric. Signal strength.

kappa

Numeric. Problem dimension on the phase transition curve.

verbose

Print progress if TRUE.

Value

Numeric. Problem dimension \(\kappa\) (\(\beta\) or \(\gamma\)) on the phase transition curve.

Details

When covariates are multivariate Gaussian, the phase transition dimension can be characterized as following. $$ \kappa > h_{\mathrm{MLE}}(\beta_0, \gamma_0) \implies \lim_{n,p\to\infty} \mathrm{P}(\text{MLE exists}) = 0 $$ $$ \kappa < h_{\mathrm{MLE}}(\beta_0, \gamma_0) \implies \lim_{n,p\to\infty} \mathrm{P}(\text{MLE exists}) = 1. $$ The function \(h\) is defined to be $$ h_{\mathrm{MLE}}(\beta_0, \gamma_0) = \min_{t_0, t_1 \in \mathbb{R}} \mathbb{E}\left[(t_0 Y + t_1 V - Z)_+^2 \right], $$ where \(X\sim\mathcal{N}(0,1)\) and \(\mathrm{P}(Y=1|X) = 1- \mathrm{P}(Y=-1|X) = \rho'(\beta_0 + \gamma_0 X) \). \(Z\sim\mathcal{N}(0,1)\) and is independent of \(X,Y\). The phase transition curve is thus \(\kappa(\beta_0, \gamma_0)\). It also depends on the success probability \(\rho'\).

References

The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression Emmanuel J. Candes and Pragya Sur, Ann. Statist., Volume 48, Number 1 (2020), 27-42.

Examples

if (FALSE) {
# when Y is independent of X, should return 0.5 for logistic model
# should return 0.5
rho_prime_logistic <- function(t) 1 / (1 + exp(-t))
solve_kappa(rho_prime_logistic, 0, 0)
}