solve_kappa
computes the problem dimension \(\kappa\) where
the phase transition occurs in binary regression, given \(\beta\) and \(\gamma_0\). solve_beta
and solve_gamma
computes \(\beta_0\) and \(\gamma_0\) on the phase transition curve
given the other one and \(\kappa\).
Usage
solve_kappa(rho_prime, beta0, gamma0)
solve_beta(rho_prime, kappa, gamma0, verbose = FALSE)
solve_gamma(rho_prime, kappa, beta0, verbose = FALSE)
Arguments
- rho_prime
Function. Success probability \(\rho(t) = \mathrm{P}(Y=1\,|\, X^\top \beta = t)\)
- beta0
Numeric. Intercept value.
- gamma0
Numeric. Signal strength.
- kappa
Numeric. Problem dimension on the phase transition curve.
- verbose
Print progress if
TRUE
.
Value
Numeric. Problem dimension \(\kappa\) (\(\beta\) or \(\gamma\)) on the phase transition curve.
Details
When covariates are multivariate Gaussian, the phase transition dimension can be characterized as following. $$ \kappa > h_{\mathrm{MLE}}(\beta_0, \gamma_0) \implies \lim_{n,p\to\infty} \mathrm{P}(\text{MLE exists}) = 0 $$ $$ \kappa < h_{\mathrm{MLE}}(\beta_0, \gamma_0) \implies \lim_{n,p\to\infty} \mathrm{P}(\text{MLE exists}) = 1. $$ The function \(h\) is defined to be $$ h_{\mathrm{MLE}}(\beta_0, \gamma_0) = \min_{t_0, t_1 \in \mathbb{R}} \mathbb{E}\left[(t_0 Y + t_1 V - Z)_+^2 \right], $$ where \(X\sim\mathcal{N}(0,1)\) and \(\mathrm{P}(Y=1|X) = 1- \mathrm{P}(Y=-1|X) = \rho'(\beta_0 + \gamma_0 X) \). \(Z\sim\mathcal{N}(0,1)\) and is independent of \(X,Y\). The phase transition curve is thus \(\kappa(\beta_0, \gamma_0)\). It also depends on the success probability \(\rho'\).
References
The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression Emmanuel J. Candes and Pragya Sur, Ann. Statist., Volume 48, Number 1 (2020), 27-42.
Examples
if (FALSE) {
# when Y is independent of X, should return 0.5 for logistic model
# should return 0.5
rho_prime_logistic <- function(t) 1 / (1 + exp(-t))
solve_kappa(rho_prime_logistic, 0, 0)
}